Molecular Structure of Vanadyl(V) Chloride as Studied by Gas Electron Diffraction

KEN-ICHI KARAKIDA and KOZO KUCHITSU

Department of Chemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113 Japan Received July 9, 1974

The molecular structure of OVCl, has been determined as follows by an analysis of electron diffraction intensities combined with the rotational constants for $OV^{35}Cl_{3}$, $OV^{37}Cl_{3}$ and $OV^{35}Cl_{2}^{37}Cl$ determined in a *previous microwave study:* $r_g(V-Cl) = 2.142 \pm$ $\ddot{\theta}$.002 Å, $r_g(O-V) = 1.570 \pm \ddot{\theta}$.005 Å, $r_g(Cl \cdots Cl) =$ 3.530 ± 0.002 Å and $\angle CL-V\text{-}Cl$ (r_{av}) = 111.3 \pm 0.1°. *The uncertainties represent estimated limits of error. An isotopic difference in the V-Cl distance, rav(V-* ^{35}Cl)- $r_{av}(V^{-37}Cl)$, is estimated to be (6 \pm 4) \times 10⁻⁵Å.

Introduction

As part of a series of studies of the structures of inorganic halides by gas electron diffraction¹⁻³, the structure of $OVCl₃$ has been determined in the present study. The r_0 structure of this molecule was determined⁴ in the recent microwave study of the authors using five rotational constants for $OV³⁵Cl₃$, $OV³⁷Cl₃$ and OV ${}^{35}Cl_2{}^{37}Cl$. Though this r_0 structure appeared to be an order of magnitude more precise than the earlier structure reported by Palmer⁵ by visual electron diffraction, it was difficult to estimate the accuracy of the r_0 parameters, since the r_0 structure is liable to unknown systematic uncertainty⁶. One origin of the uncertainty consists in the harmonic terms in the rotational constants B_0 , and hence, B_0 had to be converted to B_2 by subtraction of the interaction terms'.

Another important problem is the effect of isotopic substitution. Because of zero point vibration, isotope effects on the structural parameters cause another systematic uncertainty, which is frequently much larger than the random uncertainty due to experimental errors in the rotational constants^{8, 9}; without precise knowledge about the force field, there is no reliable way at present for estimating the isotope effect. However, since electron diffraction intensity provides independent and complementary information on molecular geometry, a joint least squares analysis of electron diffraction and spectroscopic data can reduce strong correlation among molecular parameters including isotopic differences. This method has thus far been applied mostly to studies of organic structures $10, 11$, but it should be equally effective for an analysis of inorganic structures, as demonstrated by Jacob *et al.*¹² for XeOF₄. In their joint least squares analysis they made careful selections of relative statistical weights and estimated random and systematic errors in the molecular parameters, although no explicit account seems to have been taken of the isotopic effect on the average structure.

In our previous study of $CH₃CN⁹$, an isotopic difference in the C-H distance, $\delta r = r_{av}$ (C-H) $-r_{av}$ (C-D), was treated as one of the independent parameters in a joint least squares analysis*. Since *or* had to be assumed otherwise, this procedure alleviated the systematic errors originating from the isotopic effect, but δr was too small to be significantly determined. The ${}^{35}Cl-{}^{37}Cl$ isotopic effect in OVCl₃ is estimated to be so much smaller than the hydrogen-deuterium effect in CH₃CN that it seems even more difficult to detect. On the other hand, $OVCI₃$ has a more favorable condition than CH,CN for an analysis of the isotopic difference, since the rotational constant C is available and since it has fewer structural parameters. In addition, the V-Cl bond distance, which is strongly correlated with the isotopic difference, can be determined accurately since the V-Cl pair has a large electron scattering power. Therefore, an attempt was made in the present study to observe an isotopic difference in the V-Cl distance and to determine a more accurate structure of $OVCl₃$ by a complementary use of electron diffraction and spectroscopic data.

Experimental

A commercial sample (purity over 99%) purchased from Nakarai Chemicals Co. was used without further purification. Since the sample decomposes rapidly in the presence of water $(2OVCl₃ + 3H₂O₂ \rightarrow V₂O₅ +$ 6HCl), it was handled in a dry box. A sample holder with a greaseless stopcock was used, because OVCI_3 is miscible in any proportion with grease. No red precipitate of V_2O_5 indicating hydrolysis of the sample was detected during the experiment.

^{*} See Ref. 6 for definitions of the structural parameters, r_{av} , r_a , r_a , r_a^0 , r_z and r_g , used in the present paper.

Figure 1. Experimental and best fit molecular intensities for OVCI, shown in open circles and the solid curve, respectively. The lower solid and broken curves represent residuals and error limits of the molecular intensity corresponding to a fractional error of 1×10^{-3} of the original photocurrent, respectively.

Figure 2. Experimental (open circles) and theoretical radial distribution curves for OVCl₃. The index of resolution is 0.74. The lower curve represents residuals. A damping factor, exp $(-0.0016 s²)$, was used.

Electron diffraction photographs were taken with an r^3 -sector¹³ at camera lengths of about 107.7 mm and 243.3 mm. The electron wavelength was about 0.06A. The sample gas was maintained in thermal equilibrium with its liquid phase at room temperature. The pressure of the sample was about 10 Torr. The exposure times for the short and long camera lengths were about 3 min and 1 min, respectively. Other experimental details are described elsewhere^{13,14}. The scale factor was calibrated¹³ with reference to the $r_a(C=O)$ distance $(1.164, \text{\AA})$ of carbon dioxide measured under the same experimental conditions.

The optical densities (0.16-0.47) were assumed to be proportional to electron intensities. Observed molecular intensities covering the range $s = 4.0-37.7 \text{ Å}^{-1}$ were used in the analysis. The data taken with the short and long camera lengths were linked at $s =$ 9.4 \AA^{-1*} . The elastic and inelastic scattering factors and the phase shifts were taken from the tables prepared by Schäfer et al.¹⁵ Typical molecular intensities and the corresponding radial distribution curve are illustrated in Figure 1 and 2, respectively. Most of the calculations were carried out on a HITAC 8800/8700 operating system in the Computer Center of the University of Tokyo.

Analysis and Discussion

Force Constants

Mean square amplitudes and vibrational corrections⁶ were calculated from the F_s matrix given in Table I. The force constants were obtained with reference to those for $OPCl₃¹⁶$ and adjusted to reproduce the observed fundamental frequencies assigned by Clark and Mitchell". The following sets of linear combinations of the internal coordinates defined in Figure 3 were selected as the internal symmetry coordinates:

For the A_1 species,

$$
S_1 = \Delta D
$$

\n
$$
S_2 = 3^{-1/2} (\Delta d_1 + \Delta d_2 + \Delta d_3)
$$

\n
$$
S_3 = 6^{-1/2} (\Delta \alpha_{12} + \Delta \alpha_{23} + \Delta \alpha_{13} - \Delta \beta_1 - \Delta \beta_2 - \Delta \beta_3)
$$
 (1)

and for the E species,

$$
S_{4a} = 6^{-1/2} (2\Delta d_1 - \Delta d_2 - \Delta d_3)
$$

\n
$$
S_{5a} = 6^{-1/2} (2\Delta \beta_1 - \Delta \beta_2 - \Delta \beta_3)
$$

\n
$$
S_{6a} = 6^{-1/2} (2\Delta \alpha_{23} - \Delta \alpha_{12} - \Delta \alpha_{13})
$$

\n
$$
S_{4b} = 2^{-1/2} (2\Delta d_2 - \Delta d_3)
$$

\n
$$
S_{5b} = 2^{-1/2} (\Delta \beta_2 - \Delta \beta_3)
$$

\n
$$
S_{6b} = 2^{-1/2} (\Delta \alpha_{13} - \Delta \alpha_{12}).
$$

The calculated frequencies listed in Table II agree with the observed frequencies to within 0.5 cm^{-1} . The calculated amplitudes and vibrational corrections are listed in Table III.

^{*} For a listing of the experimental total intensity and background data order document NAPS 02501 from ASIS-National Auxiliary Publications Service, c/o Microfiche Publications, 440 Park Avenue South, New York, N.Y. 10016, remitting \$1.50 for each microfiche or \$5.00 for each photocopy,

	A_1 species	E species			
S_{1} S ₂	7.72 0.20 0.077 3.01	$S_{\rm A}$ $S_{\rm S}$	$2.07 - 0.13$ 0.16 $0.78 - 0.19$		
S_{3}	0.625	s.	0.52		

a Force constants for internal symmetry constants for internal symmetry coordinates $\frac{1}{2}$ ofte constants for internal symmetry coordinates 5 defined in Eq. (1). The units are md/Å for elements 11, 12, 22 and 44, md for 13, 45 and 46, and md/Å for 33, 55, 56 and 66.

TABLE II. Fundamental Frequencies for $OVCl₃$ (cm⁻¹).

Species		obsd ^a	calcd ^b	Description ^a
	v_{1}	1042.5	1042.6	V -O stretch
A_{1}	v_{2}	409.5	409.5	V-Cl stretch
	$\nu_{\mathbf{a}}$	163.0	162.8	VCl ₃ deformation
	$v_{\rm A}$	503.0	503.1	V-Cl stretch
E	ν_{5}	246.0	246.1	$O-V-Cl3$ rocking
	v_{6}	124.5	124.5	VCl ₃ deformation

^aThe vibrational modes were assigned by Clark and Mitchell, Ref. 17. b Calculated in the present study by users and the present study by use of the F, \mathbb{R} . \mathbb{R} \mathbb

Table III. Mean Amplitudes and Shrinkage Corrections for $\frac{1}{2}$

	l obsd ^b	l calcd ^{\circ}	$r_{\rm a} - r_{\alpha}$ ^d	
$O-V$	0.041 ± 0.006	0.0368	0.0038	
$V - Cl$	0.048 ± 0.003	0.0492	0.0029	
$O \cdot \cdot \cdot Cl$	0.086 ± 0.009	0.0945	0.0015	
$Cl \cdots Cl$	0.112 ± 0.006	0.1165	-0.0020	

^a In Å units. ^b Uncertainties represent estimated limits of μ ame. Oncertainties represent estimated mines of for ϵ is 298 K from the force constants amplitudes, $\epsilon \Delta z \geq 0.7$, calculated at 298 K from the force constants given in Table I. The range of uncertainties are about \pm 5% and \pm 10% for bonded and nonbonded pairs, respectively. ^d Shrinkage corrections calculated at 298 K.

Figure 3. Internal Coordinates for OVCla.

Electron Diffraction. Analysis and r,' Structure

Since this molecule has C_{3v} equilibrium symmetry, Since this indicate has \mathcal{L}_{3v} equinorium symmetry, were parameters, $r(\theta - \theta)$, $r(\theta - \theta)$ and $\theta \in \mathbb{R}$.

TABLE I. F_s matrix for OVCl₄⁸. $\qquad \qquad$ asymmetry parameters κ for the O-V and V-Cl bonds were estimated¹⁸ to be 0.6×10^{-6} and 1.9×10^{-6} Å³, respectively, from the anharmonicity parameters a_3^{19} for O-V and V-Cl assumed to be 2.0\AA^{-1} . The x parameters for nonbonded pairs were ignored since the observed radial distribution peaks of the nonbonded pairs were symmetric within estimated experimental $error³$.

> A least squares analysis was carried out with an empirical diagonal weight matrix²⁰. The observed indices of resolution for the long and short camera lengths were 0.87 ± 0.02 and 0.74 ± 0.03 , respectively. Since these indices were appreciably smaller than those normally observed in our laboratory, a number of tests were made to investigate the origin of the discrepancies from unity. The following pieces of evidence indicated that the "local" indices of resolution *(i.e.,* the ratios of the experimental and theoretical intensity maxima) were essentially independent of s and that the discrepancies originated mainly from uniform secondary scattering of electrons:²¹

- ence a controlled vere reproducible. Blank exposures taken without the sample gas gave only weak and uniform photographic densities. In one experiment, diffraction patterns were taken of a sample exposed for several hours to a moist atmosphere, but the structural parameters and indices derived from them were essentially unchanged.
- from them were essenting energies. correlation with the indices of resolution, agree with the corresponding theoretical estimates within experimental error, as shown in Table III.
- ^t Caperimental error, as shown in Taste 111. for reference under essentially the same experimental conditions but with exposure times of about one third of those of the $OVCl₃$ sample, gave indices of 1.00 ± 0.02 for both long and short camera lengths.
- ed called a congetist.
(4 Relative intensities of the observed radial distribution peaks (Figure 2) are consistent with the corresponding theoretical values within experimental error.
- error.
The structural parameters derived from diffraction intensities are consistent with the rotational constants determined by microwave spectroscopy⁴ as described in the following sections.

It was not possible, however, to make a quantitative account for the problem in terms of intramolecular²², intermolecular and metal scattering or sample impurity²¹.

The r_{α} parameters determined in the diffraction analysis were extrapolated to zero Kelvin neglecting the temperature dependence of the angle parameter and using a diatomic approximation for the bond parameters⁶ with assumed a_3 parameters. The random errors σ_1 and σ_2 in the $r_a{}^{\text{o}}$ parameters were estimated by use of their standard deviations and discrepancies among

the parameters derived from different plates, respectively²⁰. The σ_1 and σ_2 values are comparable with each other. Systematic errors in the scale factor were estimated to be $\pm 0.06\%$. Uncertainties of 10% in the harmonic terms of the vibrational corrections are negligible, and the effect of uncertainties in the anharmonic corrections with a_3 values assumed to be $2 \pm 1 \text{\AA}^{-1}$ are also negligible except on the $r_{\alpha}^{0}(V-Cl)$ parameter, ± 0.0009 Å. Changes of 100% in the x parameters for the bonded pairs and changes of $\pm 2.0 \times 10^{-6}$ Å³ for the nonbonded pairs caused no significant systematic errors in the distances except in $r_a^{0}(V-C)$, ± 0.0008 Å. The r_a ⁰ structure with uncertainties estimated to be 2.5 times the random standard deviations plus the systematic errors estimated above is shown in Table IV.

r, Structure and the Influence of Isotopic Differences

The rotational constants⁴ B_0 for $\text{OV}^{35}\text{Cl}_3$ and $\text{OV}^{37}\text{Cl}_3$ and A_0 , B_0 and C_0 for $\text{OV}^{35}\text{Cl}_2^{37}\text{Cl}$, listed in Table V, were transformed into the average rotational constants²³ A_z , B_z and C_z (abbreviated in a set as B_z). The corrections were estimated to have uncertainties of $\pm 10\%$. Uncertainties in B_z originate mainly from those in the B_0 to B_z corrections, except for the C_z constant for OV³⁵Cl₂³⁷Cl, where the experimental error in C_0 is larger than the uncertainty in the correction. The rotational constants $B_{\alpha}{}^0$ calculated from the r_a ⁰ structure determined in the foregoing electron diffraction analysis are compared with *B,* in Table V. The diffraction and spectroscopic constants agree within the experimental error of the former.

Since the C axis of $\text{OV}^{35}\text{Cl}_2^{37}\text{Cl}$ approximately coincides with the molecular symmetry axis, the rotational constant C_z provides direct information on the r_z (Cl··· Cl) parameter, $3.529_6 \pm 0.001_5$ Å. This is in agreement with the $r_{\alpha}^{0}(Cl \cdots Cl)$ determined by electron diffraction, 3.533 ± 0.005 Å. Therefore, it is convenient for the analysis of the rotational constants to choose the $Cl \cdots Cl$ nonbonded distance as one of the independent parameters and regard the Cl-V-Cl angle as a function of $r(V-Cl)$ and $r(Cl \cdot \cdot \cdot Cl)$.

If isotopic differences in the parameters are completely ignored, the $r_2(O-V)$ and $r_2(V-Cl)$ parameters can be derived from the rotational constants *B,*

TABLE IV. Average Structures for $OVCl₃^a$.

	$r_{\alpha}^{\rm o b}$	$r_{\rm av}^{\rm c}$	$r2$ ^d	
$O-V$	1.573 ± 0.008	$1.568_1 \pm 0.005$	1.569 ± 0.012	
$V-C1$	2.138 ± 0.002	$2.138_1 \pm 0.002$	2.138 ± 0.003	
\angle Cl-V-Cl	111.4 ± 0.4	$111.2_6 \pm 0.1$	111.3 ± 0.2	
$Cl \cdots Cl$	3.533 ± 0.005	$3.529_7 \pm 0.001_5$	$3.529_{6} \pm 0.001_{5}$ ^e	

^a Distances are in \AA units and angles are in degrees. The final r_e structure is given in Table VII. See Ref. 6 for definitions of the structures. Uncertainties represent estimated limits of error. **b** Derived from electron diffraction intensities. ^e Derived from a joint analysis of electron diffraction intensities and rotational constants. ^d Derived from five rotational constants. The isotopic difference, $r_r(V_3^{35}Cl) - r_s(V_4^{37}Cl)$, is assumed to be $(6 + 4) \times 10^{-5}$ Å. The isotopic effect in the angle is assumed to be $0 + 0.01^{\circ}$ and the secondary isotope effect is ignored. ^E Derived uniquely from the rotational constant C_z for $\text{OV}^{35}\text{Cl}_2{}^{37}\text{Cl}$.

TABLE V. Rotational Constants for $OVCl₃^a$ (cm⁻¹).

	$B_{\alpha}^{\ b}$	$B_{\rm z}^{\rm c}$	$B_\alpha{}^{0\,\mathrm{d}}$	$B_{av}^{\quad e}$
B_{1}	0.0580975(3)	0.058037(5)	0.05800(15)	
B ₂	0.0555451(7)	0.055488(5)	0.05546(15)	
A_3	0.0580381(20)	0.057977(5)	0.05794(15)	0.057977(5)
B ₃	0.0564447(20)	0.056386(5)	0.05635(15)	0.056386(5)
C_{λ}	0.037998(30)	0.037980(30)	0.03790(10)	0.037977(29)
$B_1 - B_2$	0.0025524(5)	0.0025490(5)		0.0025490(7)
$B_1 + B_2$	0.1136426(7)	0.113524(10)		0.113523(9)

^a Rotational constants *B* for OV³⁵Cl₃ and OV³⁷Cl₃ and *A*, *B* and *C* for OV³⁵Cl₃³⁷Cl are denoted as B_1 , B_2 , A_3 , B_3 and C_3 , respectively. Uncertainties attached to the last digits are given in parentheses. $\frac{b}{c}$ Observed rotational constants taken from Ref. 4. ϵ Average rotational constants calculated from B_0 with corrections for vibrational effects. The limits of error are estimated from uncertainties in the quadratic force constants used for calculating the corrections. d Rotational constants calculated from the r_α^0 structure determined by the present analysis of ED intensities. e^t Best-fit rotational constants obtained from the joint least squares analysis of electron diffraction and spectroscopic data. Uncertainties represent 2.5 times the estimated standard deviations.

by use of an approximate two-dimensional diagram4. A cross section of the three-dimensional parameter space at r_z (Cl \cdots Cl) = 3.5296Å is shown in Figure 4. The relations given by the rotational constants B_z for $\text{OV}^{35}\text{Cl}_3$ and $\text{OV}^{37}\text{Cl}_3$, denoted as B_1 and B_2 , respectively, form planes almost exactly parallel to the r (Cl···Cl) axis. Their cross sections form two straight lines in the $r(O-V)-r(V-CI)$ plane. The difference between the B_1 and B_2 slopes has been exaggerated but the crossing point P is correctly shown. The rotational constants A_2 and B_2 for OV³⁵Cl₂³⁷Cl (A_3 and B_3), which give relations almost identical to B_1 and *B,* respectively, are not displayed in the figure. The most probable r_a^0 parameters determined by electron diffraction are shown by R with the estimated uncertainty indicated by an ellipse. Since the ellipse crosses the lines, the diffraction and spectroscopic data are compatible.

However, small differences originating from the substitution of 35 Cl by 37 Cl should be carefully examin $ed^{6,8,9}$ for a critical comparison of the r_z parameters with the r_a^0 parameters. If isotopic differences in the V-Cl distance and the O-V-Cl angle, $\delta r = r_z(V -$ ³⁵Cl)-r_z(V-³⁷Cl) and $\delta \alpha = \alpha (O - V^{-35}Cl) - \alpha (O - V^{-1})$ 37 Cl), respectively, and secondary isotope effects^{24,25} are completely ignored, the most probable set of the r_z parameters corresponds to point P, where the two lines cross each other. This point is located outside the error ellipse of the r_a ⁰ structure, and if the uncertainties in the r_z parameters are assumed to be nearly equal

Figure 4. A cross section of the three-dimensional parameter space, where $r(C1 \cdot C1)$ equals 3.5296 Å. Two straight lines B_1 and B_2 represent the relations given by the rotational constants B_z for $\text{OV}^{35}\text{Cl}_3$ and $\text{OV}^{37}\text{Cl}_3$, respectively. The difference between the B_1 and B_2 slopes is exaggerated. When the isotopic differences are ignored, the most probable set of the r_z parameters corresponds to point P. If the isotopic difference in $r(V-Cl)$, $\delta r = r_z(V-35Cl) - r_z(V-37Cl)$, is assumed to be O.O0006A, the parameter set satisfying the condition set by B_1 and B_2 shifts to Q. The most probable r_n ⁰ parameters determined by a joint least squares analysis of electron diffraction and spectroscopic data are shown by S.

to those in the r_0 parameters, 0.005\AA and 0.001\AA for $r(O-V)$ and $r(V-CI)$ respectively, these r_z parameters are significantly inconsistent with the r_a ⁰ parameters. On the other hand, if δr is assumed to be 6×10^{-5} Å, the parameter set which satisfies the B_1 and B_2 conditions shifts from P to Q. The isotopic difference δr , $(6 \pm 4) \times 10^{-5}$ Å, brings the r_z(V-Cl) parameter into agreement with the $r_{\alpha}^{0}(V-Cl)$ parameter determined by electron diffraction. The uncertainty in *6r* is estimated from the following sources: a) uncertainty in the r_a^0 (V–Cl) parameter, ± 0.002 Å, b) uncertainty in the rotational constant C_z , $\pm 0.3 \times 10^{-4}$ cm⁻¹, c) uncertainty in the difference between the rotational constants B_1 and B_2 , $\pm 0.5 \times 10^{-6}$ cm⁻¹, and d) the neglect of other isotope effects. By use of the diatomic approximation*,

$$
a_3 \cong (2r \cdot \delta r + \delta < \Delta \varrho^2>)/3r \cdot \delta < \Delta z^2>
$$
 (2)

where $\delta < \Delta z^2$ and $\delta < \Delta \rho^2$ denote the isotopic differences in the parallel and perpendicular mean square amplitudes, respectively, the anharmonicity parameter a₃ for the V–Cl pair is estimated from δr to be 1.₉ \pm 1\AA^{-1} . This order estimate is consistent with those found in many diatomic molecules¹⁹, 1.6-2.4 Å^{-1} .

As listed in Table IV, $r(O-V)$ can be determined by electron diffraction data with an uncertainty several fold as large as that in $r(V-Cl)$, since the scattering power of the O-V pair is only about 21% of that of the V-Cl pair. This is also the case for the r_z (O-V) and $r_{z}(V-Cl)$ determined by spectroscopic data. However, uncertainty in the angle parameter can be decreased by a joint analysis, since r_a^0 (V–Cl) is defined well by electron diffraction data and $r_z(Cl \cdot \cdot \cdot Cl)$ is defined well by spectroscopic data.

Joint Analysis of Electron Diffraction and Spectroscopic Data

As schematically shown in Figure 4, information on the effect of isotopic substitution is provided by the difference between the rotational constants B_1 and B_2 . The uncertainty in $B_1 - B_2$ was estimated to be 0.5 \times 10^{-6} cm⁻¹, while the uncertainties in B_1 and B_2 were about 0.5×10^{-5} cm⁻¹, because various systematic errors in the B_0 to B_2 corrections in B_1 and B_2 cancel each other. Accordingly, the rotational constants $B_1 \pm$ B_2 , A_3 , B_3 and C_3 listed in Table V were combined with the diffraction intensities, and the V-Cl isotopic difference δr was taken as an additional structural parameter. The isotopic difference $\delta \alpha$ was assumed to be $0 \pm 0.01^{\circ}$ and held constant, and the secondary isotope effect was ignored.

The relative weights for the rotational constants were adjusted empirically until 2.5 times the standard errors in the rotational constants were nearly equal to their uncertainties. The weights used in the analysis were 4×10^{10} , 1×10^8 , 2×10^8 , 2×10^8 and $2 \times$ 10⁷ for $B_1 - B_2$, $B_1 + B_2$, A_3 , B_3 and C_3 , respectively,

TABLE VI. Error Matrix for OVCl₃^a.

	k_1 ^b	k_2 ^c	$r(O-V)$	$r(V-Cl)$	δr^d		\angle Cl-V-Cl l (Cl-Cl)	$I(O-Cl)$	$l(V-Cl)$	$l(O-V)$
k_1	941	386	139	-64	-9	72	173	228	112	95
k_{2}		1031	-98	47	8	-43	270	218	245	290
$r(O-V)$			161	-73	-9	89	-23	19	-20	-46
$r(V-Cl)$				34	4	-38	11	-7	9	21
δr						4	2	$\overline{2}$	2	3
\angle Cl-V-Cl						62	-9	16	-8	-23
$I(Cl-Cl)$							257	54	65	76
$l(O-Cl)$								297	53	57
$l(V-Cl)$									74	68
$l(O-V)$										288

^a Units (\times 10⁻⁵) for the distances are Å, that for the angle is rad and those for the indices are dimensionless. ^b Index of resolution for the long camera region. c Index of resolution for the short camera region. $d r(V^{-35}Cl) - r(V^{-37}Cl)$.

TABLE VII. Comparison of $OVCI₃$ structures^a.

	$r_{\rm o}^{\rm b}$	r.-	r_a^{d}	
$O-V$	1.570 ± 0.005	1.595 ± 0.005	1.56 ± 0.04	
$V - Cl$	2.142 ± 0.002	2.131 ± 0.001	2.12 ± 0.03	
\angle Cl-V-Cl	$111.3 \pm 0.1^{\circ}$	111.8 ± 0.2	111.2 ± 2	
\angle O-V-Cl	$107.6 \pm 0.1^{\circ}$	107.0 ± 0.2	107.7 ± 2	

^a Distances are in \hat{A} units and angles are in degrees. $\frac{b}{c}$ Derived from the r_{av} structure. The final result determined in the present study. ^e Ref. 4. Systematic errors due to vibrational effects are not included in the quoted uncertainties. ^d Ref. 5. Derived from a visual electron diffraction study. ϵ_{rav} structure.

where a unit weight was assigned to the molecular intensities from $s = 6.3$ to 26.7 Å⁻¹ taken at $\pi/10$ intervals. A typical error matrix is shown in Table VI.

The isotopic difference in the angle and the secondary isotopic effect are found to have little influence on the r_{av} structure except on the δr parameter, since the correlation among the r_z parameters is eliminated by the joint use of the electron diffraction intensity. The δr parameter is correlated with $\delta \alpha$ and a change of ± 0.01 ° in $\delta \alpha$ caused a systematic error of 2.0 × 10⁻⁵ Å in δr .

The r_{av} structure listed in Table IV is not significantly different from the r_{α} ⁰ structure derived from the electron diffraction data alone except that the angle parameter is appreciably more accurate. The most probable r_{av} set is shown by S in Figure 5. The $r_{av}(V-Cl)$ is determined almost uniquely by the diffraction data alone, and the most probable r_{av} (O-V) value is improved by use of the relation given by the rotational constants. The isotopic difference *dr* determined by the present analysis agrees with the preceding estimate.

Comparison of the Structures

The r_g structure derived from the r_{av} structure determined in the present study is compared with the r_0 structure⁴ and the earlier structure reported by Palmer⁵ in Table VII. Significant differences are observed in the r_s and $r₀$ distance

The $r_{\rm g}$ (V–Cl) distance in OVCl₃ is nearly equal to that in VCL_4^{26} , 2.138 \pm 0.002 Å. These molecules seem to be the only vanadium compounds for which precise structures have been determined^{27,28}. The V=O bond lengths in various molecules in crystals range from 1.55 to 1.67Å²⁸. The vanadium valence angle (\angle Cl-V-Cl) is about 8° larger than the corresponding phosphine valence angle in OPCl₃², \angle Cl-P-Cl = 103.3 \pm 0.2° .

Acknowledgments

The authors wish to acknowledge Drs. N.G. Rambidi and Yu. S. Ezhov of High Temperature Institute. Academy of Science USSR, for stimulating discussions in the initial stage of the present study. They are also indebted to Professor Robert K. Bohn for his helpful comments on the manuscript and to Dr. T. Fukuyama for his technical assistance in the experiment and analysis.

References

- 1 Y. Morino, K. Kuchitsu and T. Moritani, *Inorg. Chem., 8,* 867 (1969).
- 2 T. Moritani, K. Kuchitsu and Y. Morino, *Znorg. Chem., IO,* 344 (1971).
- 3 K. Kuchitsu, T. Shibata, A. Yokozeki and C. Matsumura, *Znorg. Chem., 10, 2584 (1971).*
- *4* K. Karakida, K. Kuchitsu and C. Matsumura, Chem. *Lett.,* 283 (1972).
- 5 K. J. Palmer,J. *Am. Chem. Sot., 60, 2360 (1938).*
- *6* K. Kuchitsu and S.J. Cyvin, in S.J. Cyvin (ed.), "Molecular Structures and Vibrations", Elsevier, Amsterdam, 1972, Ch. 12.
- 7 T. Oka,J. *Phys. Sot. Jap., 15, 2274 (1960).*
- *8* K. Kuchitsu, T. Fukuyama and Y. Morino, *J. Mol. Structure, 4,* 41 (1969).
- 9 K. Karakida, T. Fukuyama and K. Kuchitsu, *Bull. Chem. Sot. Jap., 47, 299 (1974).*
- 10 K. Kuchitsu, "Gas Electron Diffraction", in G. Allen (ed.), *MTP International .Review of Science, A Biennial Series, Physical Chemistry, Series one,* Vol. 2, Ch. 6, Medical and Technical Publishing Co., Oxford, 1972.
- 11 K. Kuchitsu, in D.R. Lide, Jr. and M.A. Paul (ed.), "Critical Evaluation of Chemical and Physical Structural Information", National Academy of Science, Washington, DC., 1974, p. 132.
- 12 E.J. Jacob, H.B. Thompson and L.S. Bartell, *1. Mol. Structure, 8, 383 (1971).*
- 13 Y. Murata, K. Kuchitsu and M. Kimura, *lap. J. Appl. Phys., 9, 591 (1970).*
- *14* M. Tanimoto, K. Kuchitsu and Y. Morino, *Bull. Chem. Sot. Jap., 43, 2776 (1970).*
- 15 L. Schafer, A.C. Yates and R. A. Bonham, *J.* Chem. Phys., 55, 3055 (1971).
- 16 J.S. Ziomek and E.A. Piotrowsky, *J.* Chem. Phys., 34, 1087 (1961).
- 17 R. J.H. Clark and P.D. Mitchell, *J. Chem. Sot. (Dalton), 2429 (1972).*
- 18 K. Kuchitsu, *Bull. Chem. Sot. Jap., 40 498 (1967).*
- *19* K. Kuchitsu and Y. Morino, *Bull. Chem. Sot. Jap., 38, 805 (1965).*
- *20 Y.* Morino, K. Kuchitsu and Y. Murata, *Acta Crystallogr., 18, 549 (1965).*
- *21* K. Kuchitsu, ref. 6, Ch. 10.
- 22 T.C. Wong and L.S. Bartell, *J. Chem. Phys., 58, 5654* (1973), and references therein.
- 23 M. Toyama, T. Oka and Y. Morino, *J. Mol. Spectrosc., 13, 193 (1964).*
- *24* L.S. Bartell and H.K. Higginbotham, *J. Chem. Phys., 42,* 851 (1965).
- 25 R.H. Schwendeman and J.D. Kelly, *J. Chem. Phys., 42, 1132 (1965).*
- *26 Y.* Morino and H. Wehara, *J. Chem. Phys., 45, 4543 (1966).*
- *27* B. Beagley, in **G. A.** Sim and L.E. Sutton (eds.), "Molecular Structure by Diffraction Methods", Vol. 1, Part I, Ch. 3, The Chemical Society, London, 1973.
- 28 M. B. Hursthouse, *ibid.,* Part III, Ch. 8.